
Basic MCMC algorithms and formulating the
ODE inference problem

Ben Lambert1

ben.c.lambert@gmail.com

1University of Oxford

Monday 8th February, 2021

Day’s activity

Morning:

9.30-10.30: Lecture:“Basic MCMC algorithms and
formulating the ODE inference problem”.

10:30-12:30: Problem set: write your own MCMC
algorithm and perform inference for the logistic growth
model.

Afternoon:

13:50-14:50: Lecture: “ODE inference in practice”.

14:50-17:00: Problem set: use PINTS to perform
inference for the Lotka-Volterra model.

Lecture outcomes

1 Understand the mechanics of Random Walk Metropolis
and how it works intuitively.

2 Know that judging convergence of chains to the posterior
is hard.

3 Learn how adaptive covariance MCMC can speed up
sampling in most cases.

4 See how to formulate the inference problem for ODEs and
PDEs.

1 Bayesian inference refresher

2 MCMC refresher

3 Judging convergence of chains to posterior

4 Adaptive covariance MCMC

5 Ordinary differential equations

Bayes’ rule for inference

p(θ|X) =
p(X |θ)× p(θ)

p(X)
(1)

Why do sampling in the first place?

To normalise the posterior, need:

p(X) =

∫
p(X |θ)× p(θ)dθ (2)

where this really means:

p(X) =

∫
p(X |θ1, θ2, ..., θk)× p(θ1, θ2, ..., θk)dθ1dθ2...dθk

(3)

1 Bayesian inference refresher

2 MCMC refresher

3 Judging convergence of chains to posterior

4 Adaptive covariance MCMC

5 Ordinary differential equations

Motivation

Whilst we can’t analytically calculate the posterior, we can still
sample from it:

θi ∼ p(θ|X). (4)

If we have a large enough sample (θ1, θ2, ..., θn) provides a
good approximation to underlying distribution properties.

Defining Random Walk Metropolis

Has the following form:

Generate a random starting location θ0.

Iterate the following for t = 1, ..,T :

Propose a new location from a jumping distribution:
θt+1 ∼ J(θt+1|θt).
Calculate the ratio:

r =
likelihood(θt+1)× prior(θt+1)

likelihood(θt)× prior(θt)
(5)

Compare r with a uniformly-distributed number u between
0 and 1.
If r ≥ u =⇒ we move.
Otherwise, we remain at our current position.

Defining Random Walk Metropolis

Start with the un-normalised density.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Select a random starting location.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Propose a new location using jumping distribution.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Calculate ratio of likelihood × prior at proposed to current
location, and find r ≈ 0.58.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Compare r ≈ 0.58 with random real between 0 and 1. For
example suppose we obtain u = 0.823.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Since r < u we remain at our original location.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Generate a new proposed step using jumping distribution.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Calculate ratio of likelihood × prior at proposed to current
location, and find r ≈ 1.75.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Since r > 1 (maximum possible u) =⇒ we move to new
location.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Since r > 1 (maximum possible u) =⇒ we move to new
location.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Propose a new step using jumping distribution.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Calculate r ≈ 0.75.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Generate u = 0.278 < r =⇒ we move!

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Generate u = 0.278 < r =⇒ we move!

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Defining Random Walk Metropolis

Repeat a large number of times.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

lik
el
ih
oo
d
×
pr
io
r

Random Walk Metropolis: benefits

Under quite general conditions the Random Walk
Metropolis sampler converges asymptotically to the
posterior.

However for a sufficiently large sample size the sampling
distribution may be practically indistinguishable from the
true posterior.

The algorithm requires us to be able to calculate the ratio:

r =
likelihood(θt+1)× prior(θt+1)

likelihood(θt)× prior(θt)
(6)

The ratio uses only the numerator of Bayes’ rule =⇒ we
side-step calculating the denominator!

Random Walk Metropolis in action

Can we use Random Walk Metropolis to sample from the
continuous distribution below?

Random Walk Metropolis in action

Random Walk Metropolis in action

Random Walk Metropolis: short summary

Algorithm works by starting in a randomly-determined
position in parameter space.

In each iteration we generate a proposed (local) step from
our current position.

We then move based the ratio of the proposed
un-normalised posterior to our current location =⇒ no
need to calculate troublesome denominator.

The path of our positions over time forms our sample.

If we repeat the above for a (large) number of steps =⇒
sampling distribution ≈ posterior.

How do we choose the jumping distribution?

Sometimes called the “proposal distribution”.
In Random Walk Metropolis we use a symmetric
distribution (relaxed in Metropolis-Hastings):
=⇒ J(θa|θb) = J(θb|θa)

θa θb

pd
f

The importance of step size

Question: how should we decide on the jumping kernel’s step
size?

ste
p
siz
e

Another example posterior distribution

Assume a unimodal distribution from which we want to sample.

θ

pd
f

Another example posterior distribution

Start three algorithms with different step sizes at same point.

θ

pd
f

st
ar
tin
g
po
si
tio
n

The importance of step size: too small

The importance of step size: too large

The importance of step size: just right

Step size: summary

Whilst step size does not affect asymptotic convergence, it
does affect finite sample performance.

If step size is too small we do not find the typical set (area
of high probability mass).

If step size is too large we find the typical set, but do not
explore it efficiently.

Therefore do an initial run of sampler to find optimal step
size before starting proper.

1 Bayesian inference refresher

2 MCMC refresher

3 Judging convergence of chains to posterior

4 Adaptive covariance MCMC

5 Ordinary differential equations

Why do we need to monitor convergence?

Recap the steps of Metropolis:

1 Propose an initial position θ0 using a initial proposal
distribution π(θ) 6= p(θ|X).

2 For t = 1, ...,T do:

Propose a new location: θt+1 ∼ J(θt+1|θt).
Accept/reject move based on

r =
p(X |θt+1)p(θt+1)

p(X |θt)p(θt)
> u ∼ Unif (0, 1) (7)

Why do we need to monitor convergence?

Start with an initial proposal distribution π(θ) 6= p(θ|X).

Repeatedly take steps and use the Metropolis
accept/reject rule =⇒ π(θt); the sampling distribution at
time t.

Under a set of quite general assumptions we are
guaranteed that asymptotically: π(θt)→ p(θ|X).

However, when practically can we assume:
π(θt) ≈ p(θ|X)?

How to measure convergence?

To monitor convergence to the posterior =⇒ need the
posterior.
But we don’t have the posterior ⇐= the reason we are
doing the sampling in the first place!

Two strategies for monitoring convergence

Strategy 1: measure distributional separation.

For example Kullback-Leibler:

KL =

∫
p(θ|X)log

(
p(θ|X)

π(θt)

)
dθ (8)

Motivated by information theory.
Can use un-normalised posterior to do this.
Again integral is too difficult to do.

Two strategies for monitoring convergence

Strategy 2: monitor the approach to a stationary distribution.

We know asymptotically this will happen.
By design of Metropolis stepping and accept/reject rules,
we know the stationary distribution is the posterior.

Monitoring convergence of a single chain

Initial idea:

Compare summaries (mean, variance, etc.) of sampling
distribution for a chain at time t with itself at time t + T .

If their rate of change is below a threshold =⇒
convergence.

Monitoring convergence of a single chain

Question: What is the problem with this idea?

Convergence monitoring: Bob’s bees

Thought experiment:

Imagine a house of unknown shape.
We have an unlimited supply of bees, each equipped with
a GPS tracker allowing us to accurately monitor their
position.
Question: How can we use these to estimate the shape of
the house?

Convergence monitoring: Bob’s bees

Answer:

Release one (at a random location in the house) and
monitor its path over time.

Stop/collect bee after summary measures of its path stop
changing.

Convergence monitoring: single bee

Convergence monitoring: single bee, a bit later

Convergence monitoring: single bee, a bit bit later

Convergence monitoring: single bee

Question: what’s the actual shape of the house?

Convergence monitoring: single bee

Single chain problems: summary

One way to monitor convergence is to look for
convergence in a single chain’s summary statistics.

This method is very susceptible to the curse of hindsight
problem (“Now we’ve definitely converged on the
posterior. We hadn’t a minute ago.”)

Particularly because chains often get stuck in subregions
of θ space.

The solutions: lots of bees

Release lots of bees starting at dispersed locations in
parameter space.

Stop recording when an individual bee’s path is
indistinguishable from all others’.

Convergence monitoring: multiple bees

Convergence monitoring: multiple bees (a lot later)

Multiple chain convergence monitoring: summary

Start a number of chains in random dispersed locations in
θ space.

Chains do not interact with one another (in Metropolis).

Run each sampler until it is hard to distinguish one chain’s
path from all others’.

Less susceptible to “curse of hindsight”, since we can see
if chains aren’t mixing.

Not foolproof! There still may be an area of high
probability mass that we miss. However, less likely to fail
compared to a single chain.

The more chains, the better!

Judging convergence

Single bee in a house.

Judging convergence

Multiple bees in a house released in a single room.

Judging convergence

Question: have we converged?

Judging convergence

Multiple bees in new house released in highly dispersed rooms.

Judging convergence

Multiple bees in new house released in highly dispersed
rooms...much later.

Multiple chain convergence monitoring: open
questions

1 How to determine “random dispersed locations” at which
to start the chains?

- Ideally use an initial proposal distribution similar to
posterior shape.

- Otherwise a good rule of thumb is “Any point you don’t
mind having in a sample is a good starting point”, Charles
Geyer.

2 Which summary statistics to monitor to determine
convergence?

3 At what threshold are “between chain” statistics
sufficiently similar?

Gelman and Rubin’s R̂

Gelman and Rubin (1992) had the idea of comparing
within-chain to between-chain variability.

They quantified this comparison using:

R̂ =

√
W + 1

n (B −W)

W
(9)

Where “within-chain” variability, W = 1
m

m∑
j=1

s2j , for m

chains.

And “between-chain” variability, B = n
m−1

m∑
j=1

(θj − θ)2.

When we start B >>W since we start in an
overdispersed position.

In convergence B →W =⇒ R̂ → 1 (in practice R̂ < 1.1
usually suffices).

Warm up period

The initial proposal distribution is not the posterior.
We therefore discard the beginning part of the chain called
the “warm up” to lessen the effect of the starting position.
Typically discard first half of converged chains (can also
cut chains in two to monitor intra-chain convergence).

Warm up period

0 200 400 600 800 1000

step #

θ

Warm up period

0 200 400 600 800 1000

step #

θ

discard!

1 Bayesian inference refresher

2 MCMC refresher

3 Judging convergence of chains to posterior

4 Adaptive covariance MCMC

5 Ordinary differential equations

Inefficient exploration of the typical set by Random
Walk Metropolis

Adaptive covariance MCMC: adjusting the proposal
kernel to posterior geometry

The problem with RWM is that the proposals - being in
random directions - are unlikely by chance to align with
areas of high density.

Adaptive covariance MCMC adjusts the proposal kernel
dynamically to obtain a higher acceptance probability.

Sketch of adaptive covariance algorithm(s)

Begin by generating n samples using Random Walk Metropolis.
Start with Σ0 = identity matrix. Then,

1 Estimate sample mean: µt = 1
n

∑t
i=1 θi .

2 Estimate sample covariance matrix:
Ωt = (θ{t} − µt)(θ{t} − µt)′.

3 Proposal kernel: Σt = (1− at)Σt−1 + atΩt .

lim
t→∞

at = 0 is key to ensuring convergence to posterior

distribution.

Adaptive covariance MCMC: adjusting the proposal
kernel to posterior geometry

Adaptive covariance MCMC: summary

RWM is inefficient due to random directionality of
proposals.

Adaptive covariance MCMC dynamically changes proposal
kernel to match (global) posterior geometry leading to
significant speed ups.

ACMCMC can be used whenever RWM can be =⇒ very
general algorithm; particularly useful for ODE and PDE
models, where gradients of solution (necessary for HMC)
are expensive.

ACMCMC and loads of other algorithms are available in
PINTS: https://github.com/pints-team/pints.

Problem: adapting to global geometry often leads to very
poor local exploration.

https://github.com/pints-team/pints

1 Bayesian inference refresher

2 MCMC refresher

3 Judging convergence of chains to posterior

4 Adaptive covariance MCMC

5 Ordinary differential equations

Example: bacterial growth

We carry out experiments where we inoculate agar plates
with bacteria at time 0.
At pre-defined time intervals we count the number of
bacteria on each plate, N(t).
Suppose we want to model bacterial population growth
over time.

Example: bacteria growth data

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

0 2 4 6 8 10
0

5

10

15

20

25

time, days

co
un
t,
m

Example: bacterial growth model

Assume the following model for bacterial population
growth:

dN

dt
= αN(1− βN) (10)

where α > 0 is the rate of growth due to bacterial cell division,
and β > 0 measures the reduction in growth rate due to
“crowding”.
Question: how should we infer the parameters of this model?

Example: bacterial growth model

Answer: assume measurement error around true value:

N∗(t) ∼ normal(N(t), σ) (11)

where

N∗(t) is the measured count of bacteria at time t.

N(t) is the solution to the ODE at time t (true number of
bacteria on plate).

σ > 0 measures the magnitude of the measurement error
about the true value.

Question: how does this model work?

Example: bacterial growth model

Start with true number of bacterial cells, N(t).

N(t)

0 2 4 6 8 10
0

5

10

15

20

25

time, days

co
un
t,
m

Example: bacterial growth model

Overlay sampling distribution representing measurement error.

N(t)

0 2 4 6 8 10
0

5

10

15

20

25

time, days

co
un
t,
m

Example: bacterial growth model

And data generated from this process.

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

N(t)

0 2 4 6 8 10
0

5

10

15

20

25

time, days

co
un
t,
m

Example: bacteria growth model inference

Remember we are using a normal likelihood:

N∗(t) ∼ normal(N(t), σ) (12)

=⇒ likelihood for all observations:

L(N(t), σ) =
T∏

t=t1

1√
2πσ2

exp

[
−(N∗(t)− N(t))2

2σ2

]
(13)

Question: how do we calculate N(t)?

Example: bacteria growth model inference

dN

dt
= αN(1− βN) (14)

In most ODE models, the mean N(t) cannot be solved for
exactly so we can’t write down a “closed-form”
expression for the likelihood.

=⇒ approximate answer using a numerical method.

However any solution for N(t) - exact or numerical -
depends on the parameters of the ODE model. For our
example:

N(t) = f (t, α, β) (15)

Question: how do we do MCMC in this setting?

Example: bacteria growth model inference

For example, in Random Walk Metropolis:

Start at random location in (α, β, σ) space.

For t=1,...,T do:
1 Propose a new location (α′, β′, σ′) using a jumping

distribution.
2 Numerically (or analytically) integrate ODE to solve for

N(t, α′, β′).
3 Calculate un-normalised posterior at proposed location

=⇒ calculate r .
4 Based on r move to new location or stay at original.

=⇒ at every step we must solve ODE for N(t); can be
computationally expensive!

Issues with inference for ODEs and PDEs

ODE models are very often non-identifiable =⇒ need to
reparameterise model.

(Linked) ODE models can be slower to converge than
simpler models =⇒ need to run MCMC for longer before
R̂ < 1.1 achieved.

=⇒ important that we “know” our model well before we start
to do inference explicitly.
Worth putting energy into mathematical analysis before trying
MCMC.

Inference for ODEs: summary

ODE models are no harder to formulate than “traditional”
problems.

However for ODE models we cannot typically write down a
“closed-form” expression for the likelihood.

=⇒ use integrator to numerically solve for mean for each
set of parameters.

Posteriors for ODE models are often of a more complex
geometry than regular models and are often unidentified.

Check out: https://github.com/pints-team/pints

for ODE inference.

https://github.com/pints-team/pints

	Bayesian inference refresher
	MCMC refresher
	Judging convergence of chains to posterior
	Adaptive covariance MCMC
	Ordinary differential equations

	17.Plus:
	17.Reset:
	17.Minus:
	17.EndRight:
	17.StepRight:
	17.PlayPauseRight:
	17.PlayRight:
	17.PauseRight:
	17.PlayPauseLeft:
	17.PlayLeft:
	17.PauseLeft:
	17.StepLeft:
	17.EndLeft:
	anm17:
	17.5:
	17.4:
	17.3:
	17.2:
	17.1:
	17.0:
	16.Plus:
	16.Reset:
	16.Minus:
	16.EndRight:
	16.StepRight:
	16.PlayPauseRight:
	16.PlayRight:
	16.PauseRight:
	16.PlayPauseLeft:
	16.PlayLeft:
	16.PauseLeft:
	16.StepLeft:
	16.EndLeft:
	anm16:
	16.49:
	16.48:
	16.47:
	16.46:
	16.45:
	16.44:
	16.43:
	16.42:
	16.41:
	16.40:
	16.39:
	16.38:
	16.37:
	16.36:
	16.35:
	16.34:
	16.33:
	16.32:
	16.31:
	16.30:
	16.29:
	16.28:
	16.27:
	16.26:
	16.25:
	16.24:
	16.23:
	16.22:
	16.21:
	16.20:
	16.19:
	16.18:
	16.17:
	16.16:
	16.15:
	16.14:
	16.13:
	16.12:
	16.11:
	16.10:
	16.9:
	16.8:
	16.7:
	16.6:
	16.5:
	16.4:
	16.3:
	16.2:
	16.1:
	16.0:
	15.Plus:
	15.Reset:
	15.Minus:
	15.EndRight:
	15.StepRight:
	15.PlayPauseRight:
	15.PlayRight:
	15.PauseRight:
	15.PlayPauseLeft:
	15.PlayLeft:
	15.PauseLeft:
	15.StepLeft:
	15.EndLeft:
	anm15:
	15.20:
	15.19:
	15.18:
	15.17:
	15.16:
	15.15:
	15.14:
	15.13:
	15.12:
	15.11:
	15.10:
	15.9:
	15.8:
	15.7:
	15.6:
	15.5:
	15.4:
	15.3:
	15.2:
	15.1:
	15.0:
	14.Plus:
	14.Reset:
	14.Minus:
	14.EndRight:
	14.StepRight:
	14.PlayPauseRight:
	14.PlayRight:
	14.PauseRight:
	14.PlayPauseLeft:
	14.PlayLeft:
	14.PauseLeft:
	14.StepLeft:
	14.EndLeft:
	anm14:
	14.39:
	14.38:
	14.37:
	14.36:
	14.35:
	14.34:
	14.33:
	14.32:
	14.31:
	14.30:
	14.29:
	14.28:
	14.27:
	14.26:
	14.25:
	14.24:
	14.23:
	14.22:
	14.21:
	14.20:
	14.19:
	14.18:
	14.17:
	14.16:
	14.15:
	14.14:
	14.13:
	14.12:
	14.11:
	14.10:
	14.9:
	14.8:
	14.7:
	14.6:
	14.5:
	14.4:
	14.3:
	14.2:
	14.1:
	14.0:
	13.Plus:
	13.Reset:
	13.Minus:
	13.EndRight:
	13.StepRight:
	13.PlayPauseRight:
	13.PlayRight:
	13.PauseRight:
	13.PlayPauseLeft:
	13.PlayLeft:
	13.PauseLeft:
	13.StepLeft:
	13.EndLeft:
	anm13:
	13.39:
	13.38:
	13.37:
	13.36:
	13.35:
	13.34:
	13.33:
	13.32:
	13.31:
	13.30:
	13.29:
	13.28:
	13.27:
	13.26:
	13.25:
	13.24:
	13.23:
	13.22:
	13.21:
	13.20:
	13.19:
	13.18:
	13.17:
	13.16:
	13.15:
	13.14:
	13.13:
	13.12:
	13.11:
	13.10:
	13.9:
	13.8:
	13.7:
	13.6:
	13.5:
	13.4:
	13.3:
	13.2:
	13.1:
	13.0:
	12.Plus:
	12.Reset:
	12.Minus:
	12.EndRight:
	12.StepRight:
	12.PlayPauseRight:
	12.PlayRight:
	12.PauseRight:
	12.PlayPauseLeft:
	12.PlayLeft:
	12.PauseLeft:
	12.StepLeft:
	12.EndLeft:
	anm12:
	12.39:
	12.38:
	12.37:
	12.36:
	12.35:
	12.34:
	12.33:
	12.32:
	12.31:
	12.30:
	12.29:
	12.28:
	12.27:
	12.26:
	12.25:
	12.24:
	12.23:
	12.22:
	12.21:
	12.20:
	12.19:
	12.18:
	12.17:
	12.16:
	12.15:
	12.14:
	12.13:
	12.12:
	12.11:
	12.10:
	12.9:
	12.8:
	12.7:
	12.6:
	12.5:
	12.4:
	12.3:
	12.2:
	12.1:
	12.0:
	11.Plus:
	11.Reset:
	11.Minus:
	11.EndRight:
	11.StepRight:
	11.PlayPauseRight:
	11.PlayRight:
	11.PauseRight:
	11.PlayPauseLeft:
	11.PlayLeft:
	11.PauseLeft:
	11.StepLeft:
	11.EndLeft:
	anm11:
	11.79:
	11.78:
	11.77:
	11.76:
	11.75:
	11.74:
	11.73:
	11.72:
	11.71:
	11.70:
	11.69:
	11.68:
	11.67:
	11.66:
	11.65:
	11.64:
	11.63:
	11.62:
	11.61:
	11.60:
	11.59:
	11.58:
	11.57:
	11.56:
	11.55:
	11.54:
	11.53:
	11.52:
	11.51:
	11.50:
	11.49:
	11.48:
	11.47:
	11.46:
	11.45:
	11.44:
	11.43:
	11.42:
	11.41:
	11.40:
	11.39:
	11.38:
	11.37:
	11.36:
	11.35:
	11.34:
	11.33:
	11.32:
	11.31:
	11.30:
	11.29:
	11.28:
	11.27:
	11.26:
	11.25:
	11.24:
	11.23:
	11.22:
	11.21:
	11.20:
	11.19:
	11.18:
	11.17:
	11.16:
	11.15:
	11.14:
	11.13:
	11.12:
	11.11:
	11.10:
	11.9:
	11.8:
	11.7:
	11.6:
	11.5:
	11.4:
	11.3:
	11.2:
	11.1:
	11.0:
	10.Plus:
	10.Reset:
	10.Minus:
	10.EndRight:
	10.StepRight:
	10.PlayPauseRight:
	10.PlayRight:
	10.PauseRight:
	10.PlayPauseLeft:
	10.PlayLeft:
	10.PauseLeft:
	10.StepLeft:
	10.EndLeft:
	anm10:
	10.40:
	10.39:
	10.38:
	10.37:
	10.36:
	10.35:
	10.34:
	10.33:
	10.32:
	10.31:
	10.30:
	10.29:
	10.28:
	10.27:
	10.26:
	10.25:
	10.24:
	10.23:
	10.22:
	10.21:
	10.20:
	10.19:
	10.18:
	10.17:
	10.16:
	10.15:
	10.14:
	10.13:
	10.12:
	10.11:
	10.10:
	10.9:
	10.8:
	10.7:
	10.6:
	10.5:
	10.4:
	10.3:
	10.2:
	10.1:
	10.0:
	9.Plus:
	9.Reset:
	9.Minus:
	9.EndRight:
	9.StepRight:
	9.PlayPauseRight:
	9.PlayRight:
	9.PauseRight:
	9.PlayPauseLeft:
	9.PlayLeft:
	9.PauseLeft:
	9.StepLeft:
	9.EndLeft:
	anm9:
	9.80:
	9.79:
	9.78:
	9.77:
	9.76:
	9.75:
	9.74:
	9.73:
	9.72:
	9.71:
	9.70:
	9.69:
	9.68:
	9.67:
	9.66:
	9.65:
	9.64:
	9.63:
	9.62:
	9.61:
	9.60:
	9.59:
	9.58:
	9.57:
	9.56:
	9.55:
	9.54:
	9.53:
	9.52:
	9.51:
	9.50:
	9.49:
	9.48:
	9.47:
	9.46:
	9.45:
	9.44:
	9.43:
	9.42:
	9.41:
	9.40:
	9.39:
	9.38:
	9.37:
	9.36:
	9.35:
	9.34:
	9.33:
	9.32:
	9.31:
	9.30:
	9.29:
	9.28:
	9.27:
	9.26:
	9.25:
	9.24:
	9.23:
	9.22:
	9.21:
	9.20:
	9.19:
	9.18:
	9.17:
	9.16:
	9.15:
	9.14:
	9.13:
	9.12:
	9.11:
	9.10:
	9.9:
	9.8:
	9.7:
	9.6:
	9.5:
	9.4:
	9.3:
	9.2:
	9.1:
	9.0:
	8.Plus:
	8.Reset:
	8.Minus:
	8.EndRight:
	8.StepRight:
	8.PlayPauseRight:
	8.PlayRight:
	8.PauseRight:
	8.PlayPauseLeft:
	8.PlayLeft:
	8.PauseLeft:
	8.StepLeft:
	8.EndLeft:
	anm8:
	8.110:
	8.109:
	8.108:
	8.107:
	8.106:
	8.105:
	8.104:
	8.103:
	8.102:
	8.101:
	8.100:
	8.99:
	8.98:
	8.97:
	8.96:
	8.95:
	8.94:
	8.93:
	8.92:
	8.91:
	8.90:
	8.89:
	8.88:
	8.87:
	8.86:
	8.85:
	8.84:
	8.83:
	8.82:
	8.81:
	8.80:
	8.79:
	8.78:
	8.77:
	8.76:
	8.75:
	8.74:
	8.73:
	8.72:
	8.71:
	8.70:
	8.69:
	8.68:
	8.67:
	8.66:
	8.65:
	8.64:
	8.63:
	8.62:
	8.61:
	8.60:
	8.59:
	8.58:
	8.57:
	8.56:
	8.55:
	8.54:
	8.53:
	8.52:
	8.51:
	8.50:
	8.49:
	8.48:
	8.47:
	8.46:
	8.45:
	8.44:
	8.43:
	8.42:
	8.41:
	8.40:
	8.39:
	8.38:
	8.37:
	8.36:
	8.35:
	8.34:
	8.33:
	8.32:
	8.31:
	8.30:
	8.29:
	8.28:
	8.27:
	8.26:
	8.25:
	8.24:
	8.23:
	8.22:
	8.21:
	8.20:
	8.19:
	8.18:
	8.17:
	8.16:
	8.15:
	8.14:
	8.13:
	8.12:
	8.11:
	8.10:
	8.9:
	8.8:
	8.7:
	8.6:
	8.5:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	7.Plus:
	7.Reset:
	7.Minus:
	7.EndRight:
	7.StepRight:
	7.PlayPauseRight:
	7.PlayRight:
	7.PauseRight:
	7.PlayPauseLeft:
	7.PlayLeft:
	7.PauseLeft:
	7.StepLeft:
	7.EndLeft:
	anm7:
	7.110:
	7.109:
	7.108:
	7.107:
	7.106:
	7.105:
	7.104:
	7.103:
	7.102:
	7.101:
	7.100:
	7.99:
	7.98:
	7.97:
	7.96:
	7.95:
	7.94:
	7.93:
	7.92:
	7.91:
	7.90:
	7.89:
	7.88:
	7.87:
	7.86:
	7.85:
	7.84:
	7.83:
	7.82:
	7.81:
	7.80:
	7.79:
	7.78:
	7.77:
	7.76:
	7.75:
	7.74:
	7.73:
	7.72:
	7.71:
	7.70:
	7.69:
	7.68:
	7.67:
	7.66:
	7.65:
	7.64:
	7.63:
	7.62:
	7.61:
	7.60:
	7.59:
	7.58:
	7.57:
	7.56:
	7.55:
	7.54:
	7.53:
	7.52:
	7.51:
	7.50:
	7.49:
	7.48:
	7.47:
	7.46:
	7.45:
	7.44:
	7.43:
	7.42:
	7.41:
	7.40:
	7.39:
	7.38:
	7.37:
	7.36:
	7.35:
	7.34:
	7.33:
	7.32:
	7.31:
	7.30:
	7.29:
	7.28:
	7.27:
	7.26:
	7.25:
	7.24:
	7.23:
	7.22:
	7.21:
	7.20:
	7.19:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	6.Plus:
	6.Reset:
	6.Minus:
	6.EndRight:
	6.StepRight:
	6.PlayPauseRight:
	6.PlayRight:
	6.PauseRight:
	6.PlayPauseLeft:
	6.PlayLeft:
	6.PauseLeft:
	6.StepLeft:
	6.EndLeft:
	anm6:
	6.100:
	6.99:
	6.98:
	6.97:
	6.96:
	6.95:
	6.94:
	6.93:
	6.92:
	6.91:
	6.90:
	6.89:
	6.88:
	6.87:
	6.86:
	6.85:
	6.84:
	6.83:
	6.82:
	6.81:
	6.80:
	6.79:
	6.78:
	6.77:
	6.76:
	6.75:
	6.74:
	6.73:
	6.72:
	6.71:
	6.70:
	6.69:
	6.68:
	6.67:
	6.66:
	6.65:
	6.64:
	6.63:
	6.62:
	6.61:
	6.60:
	6.59:
	6.58:
	6.57:
	6.56:
	6.55:
	6.54:
	6.53:
	6.52:
	6.51:
	6.50:
	6.49:
	6.48:
	6.47:
	6.46:
	6.45:
	6.44:
	6.43:
	6.42:
	6.41:
	6.40:
	6.39:
	6.38:
	6.37:
	6.36:
	6.35:
	6.34:
	6.33:
	6.32:
	6.31:
	6.30:
	6.29:
	6.28:
	6.27:
	6.26:
	6.25:
	6.24:
	6.23:
	6.22:
	6.21:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	5.Plus:
	5.Reset:
	5.Minus:
	5.EndRight:
	5.StepRight:
	5.PlayPauseRight:
	5.PlayRight:
	5.PauseRight:
	5.PlayPauseLeft:
	5.PlayLeft:
	5.PauseLeft:
	5.StepLeft:
	5.EndLeft:
	anm5:
	5.100:
	5.99:
	5.98:
	5.97:
	5.96:
	5.95:
	5.94:
	5.93:
	5.92:
	5.91:
	5.90:
	5.89:
	5.88:
	5.87:
	5.86:
	5.85:
	5.84:
	5.83:
	5.82:
	5.81:
	5.80:
	5.79:
	5.78:
	5.77:
	5.76:
	5.75:
	5.74:
	5.73:
	5.72:
	5.71:
	5.70:
	5.69:
	5.68:
	5.67:
	5.66:
	5.65:
	5.64:
	5.63:
	5.62:
	5.61:
	5.60:
	5.59:
	5.58:
	5.57:
	5.56:
	5.55:
	5.54:
	5.53:
	5.52:
	5.51:
	5.50:
	5.49:
	5.48:
	5.47:
	5.46:
	5.45:
	5.44:
	5.43:
	5.42:
	5.41:
	5.40:
	5.39:
	5.38:
	5.37:
	5.36:
	5.35:
	5.34:
	5.33:
	5.32:
	5.31:
	5.30:
	5.29:
	5.28:
	5.27:
	5.26:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	4.Plus:
	4.Reset:
	4.Minus:
	4.EndRight:
	4.StepRight:
	4.PlayPauseRight:
	4.PlayRight:
	4.PauseRight:
	4.PlayPauseLeft:
	4.PlayLeft:
	4.PauseLeft:
	4.StepLeft:
	4.EndLeft:
	anm4:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

