
Practical ODE modelling

Ben Lambert1

1University of Oxford

Monday 8th February, 2021

Lecture outcomes

1 Explain difficulty with inference for ODEs;

2 Inference with PINTS and other libraries;

3 PINTS demo.

1 ODE inference refresh

2 Issues with ODE inference

3 Inference cycle

Setting up the inference problem: forward model

dy(t)

dt
= f (y , t; θ). (1)

N(t)

0 2 4 6 8 10
0

5

10

15

20

25

time, days

co
un
t,
m

Setting up the inference problem: noise model

y∗(t)
i .i .d .∼ N (y(t; θ), σ). (2)

N(t)

0 2 4 6 8 10
0

5

10

15

20

25

time, days

co
un
t,
m

Setting up the inference problem: data

L =
S∏

i=1

N (y∗(ti)|y(ti ; θ), σ). (3)

t

y(t)

Setting up the inference problem: posterior

p(θ|X) ∝ p(θ, σ)
S∏

i=1

N (y∗(ti)|y(ti ; θ), σ). (4)

t

y(t)

1 ODE inference refresh

2 Issues with ODE inference

3 Inference cycle

Why is inference for ODEs hard?

ODEs (typically) require numerical solutions =⇒
expensive;

Non-linearity =⇒ posterior distributions can be complex
/ unidentified.

Why is inference for ODEs hard?

from “Bayesian inference for differential equations”, Girolami
(2008)

How to make your life easier

Before you start inference:

Fake data simulation followed by inference: make
simulated data as similar to real data characteristics as
possible;

Profile likelihood method to assess identifiability;

General mathematical analysis: assess sensitivity of
outputs to parameters.

1 ODE inference refresh

2 Issues with ODE inference

3 Inference cycle

How to fit model to data?

class NewMethod (lots_of_hyperparameters):

...

def sample ():

...

not sure what these �rst code blocks do

x = [complex_function(a) for a in A]

y = [evaluate(x) for x in A]

...

return samples

def complex_function (a):

follows lines 2-35 in main text of ref [1]

the line below may be a mistake?

x = another_complex_fn(a)

...

vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum
libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit
sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent
lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem
sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

∂2Φ

∂x 2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
=

1

c2
∂2Φ

∂t2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis
sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec
ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue,
a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies
vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit

Journal of statistical research for statisticians, (3), 2020

Iteration

Va
lu

e

Chain 1
Chain 2
Chain 3
Chain 4

Method fails?
Try implementation

Understand
method?

Read statistical literature
Code method

Why does this cycle of misery persist?

Statistical literature is written by methods experts for
other experts;

Statistics papers do not often contain high quality
pseudocode;

Software accompanying papers is typically not
professionally developed;

Software is typically idiosyncratic;

Different problems require different solutions but solutions
currently require reinventing the wheel;

Not enough knowledge sharing between applied
researchers about “Which method works best?”.

What is PINTS?

PINTS: Probabilistic Inference for Noisy Time Series, which
covers two broad categories of inference methods:

Optimisation: single set of parameters returned;

Sampling: many sets returned.

It’s an open-source Python library available on Github.

What does existing literature do?

Most other inference software pin their hope on a single
sampler:

BUGS and JAGS: Gibbs sampler;
PyMC3 and Stan: No U-Turn Sampler (NUTS);

Other libraries prepackage forward model solution methods
with sampling method.

How is PINTS different?

PINTS not aligned to a single algorithm;

PINTS is designed to interface with (other) probabilistic
programming languages (for example, Stan);

PINTS aimed at harder forward models: ODEs and PDEs;

PINTS allows users freedom to use own forward model
solution method.

PINTS niche

Forward model
computational complexity

Parameter
dimensions

JAGS &
BUGS

Stan &
PyMC3

PINTS

emcee
MultiNest

Deciding on an approach

For cheap forward model =⇒ use Stan (you can always
use PINTS’ Stan interface if this doesn’t work);

For expensive forward models, potentially requiring
bespoke solvers =⇒ use PINTS.

PINTS in detail

Literature emphasis on developing new algorithms;

Literature dense with hard-to-decipher algorithm details;

PINTS aims to make this research useful:
Common, easy-to-use, interface for lots of methods;
Rigorous software development practices;
Many levels of testing: unit, functional, and so on;
Collaboration with statisticians working on various
methods;
Benchmark problems;
Pseudocode and tutorial papers which explain algorithms
and their ecosystem.

PINTS roadmap: samplers

PINTS 1.0

Key

PINTS 2.0+

Rejection ABC

Markov chain Monte Carlo ABC

Sequential Monte Carlo ABC

Remi AM MCMC

Random Walk MetropolisDelayed Rejection Adaptive Metropolis
(DRAM)

Population MCMC

Di�erential evolution

Emcee hammer

Di�eRential Evolution Adaptive Metropolis
(DREAM)

Rejection nested sampling
Ellipsoidal nested sampling

MultiNest

Galilean Monte Carlo

PolyChord

Di�usive nested sampling

Gradient-free HMC

Hamiltonian Monte Carlo
(HMC)

No-U-Turn Sampler
(NUTS)

Metropolis-Adjusted Langevin Algorithm
(MALA)

Riemannian
Manifold HMC

Riemannian
Manifold MALA

2nd order sensitivities

1st order sensitivities

Gradient-free

Likelihood-free

Dynamic nested sampling

dyPolyChord

Adaptive hyperrectangle SS

Covariance matching SS

Rank shrinking SS

Monomial gamma HMC

Bouncy particle sampler

Shadow HMC Adaptive HMCAdaptive MALA

Vanilla AM MCMC

AM Local-componentwise MCMC
AM Global-adaptation MCMC

Rao-Blackwell AM MCMC

Slice sampling with overrelaxation

Vine copula adaptive MCMC

Transport map accelerated MCMC

Mode jumping adaptive MCMC

Generalised elliptical slice sampling Slice sampling with Peano curves Slice sampling with hyperrectangles

Slice sampling with stepout

Slice sampling with doubling

Hamiltonian ABC

Regression-adjustment ABC

Relativistic HMC Zig-zag sampler

Families of samplers: overall

Samplers

Exact
(asymptotically)

Approximate
Bayesian

Computation
(ABC)

Nested
Markov chain
Monte Carlo

(MCMC)
Particle

Sequential
Monte Carlo

(SMC)

Vanilla ABC MCMC ABC SMC
ABC

Families of samplers: within MCMC

Markov chain
Monte Carlo

(MCMC)

Gradient-free Use gradients

Single chain Multiple chains 1st order
sensitivity

2nd order
sensitivity

Adaptive Non-adaptive
Differential
evolution

(DE)

Population
MCMC

Adaptive
covariance
Metropolis

Delayed
Rejection
Adaptive

Metropolis
(DRAM)

Random
Walk

Metropolis
Slice Vanilla DE Emcee

hammer

DiffeRential
Evolution
Adaptive

Metropolis
(DREAM)

Hamiltonian
Monte Carlo

(HMC)

No U-Turn
Sampler
(NUTS)

Metropolis
Adjusted
Langevin
Algorithm
(MALA)

Riemannian
Manifold

HMC

Riemannian
Manifold MALA

PINTS: optimisers

Optimisation more “solved” than sampling and have two
families in PINTS:

Gradient-free: CMAES, XNES, SNES, Nelder-mead, PSO,
SHGO (planned);

1st order sensitivities: gradient descent, L-BFGS
(planned).

Conclusions

Inference for ODE models is generally hard;

Stan and PINTS are your current best bet for inference.

	ODE inference refresh
	Issues with ODE inference
	Inference cycle

